
International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 144
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Trustworthy Coordination of Web Services
Atomic Transactions for Net Banking

Aditya Dakur, Shruthi Dakur

Abstract— Online Banking has become increasingly popular globally, because it is so easy and convenient for Internet users to manage
their bank accounts from anywhere of the world at any time. Banks have encouraged for this trend for years, since Online Banking also
saves lots of resources for the banks regarding of staff training, investment for ATMs and branches, and other operations costs.In this
paper we propose Web Services Atomic Transactions (WS-AT) for Internet Banking.Web services are the software components so as to
communicate with pervasive, standards-based Web technologies includes HTTP and XML-based messaging. In this paper, we explain how
to render WS-AT coordination trustworthy by applying Byzantine Fault Tolerance (BFT) techniques. More specifically, we show how to
protect the core services described in the WS-AT specification, namely, the Activation service, the Registration service, the Completion
service and the Coordinator service, against Byzantine faults. The main contribution of this work is that it exploits the semantics of the WS-
AT services to minimize the use of Byzantine Agreement (BA), instead of applying BFT techniques naively, which would be prohibitively
expensive. We have incorporated our BFT protocols and mechanisms into an open-source framework that implements the WS-AT
specification. It is useful for business applications and is highly dependable,secure and trustworthy

Index Terms— Activation service ,Byzantine Fault Tolerance, Completion service, Coordinator service,Dependable ,
,Online Banking ,Registration service ,Secure,Trustworthy ,Web Services Atomic Transactions

—————————— ——————————

1 INTRODUCTION
 S-AtomicTransaction (WS-AT) is an interoperable
transaction protocol. It enables the flow of distributed
transactions by using Web service messages, and coor-

dinate in an interoperable manner between heterogeneous
transaction infrastructures. Trustworthy coordination of
transactions is essential to ensure proper running of web ser-
vices. WS-AT uses the two-phase commit protocol to drive an
atomic outcome between distributed applications, transaction
managers, and resource managers.
Following the standard, a distributed transaction has a coor-
dinator, an initiator, and one or more participants.

In this paper we present two protocols for asynchronous
Byzantine Quorum Systems (BQS) built on top of reliable
channels one for self-verifying data and the other for any data.
Our protocols tolerate Byzantine failures with fewer servers
than existing solutions by eliminating nonessential work in the
write protocol and by using read and write quorums of differ-
ent sizes. Since engineering a reliable network layer on an un-
reliable network is difficult, two other possibilities must be
explored. The first is to strengthen the model by allowing syn-
chronous networks that use time-outs to identify failed links
or machines. We consider running synchronous and asyn-
chronous Byzantine Quorum protocols over synchronous
networks and conclude that, surprisingly, ”self-timing” asyn-
chronous Byzantine protocols may offer significant ad-
vantages for many synchronous networks when network
time-outs are long. We show how to extend an existing Byzan-
tine Quorum protocol to eliminate its dependency on reliable
networking and to handle message loss and retransmission
explicitly.

2 DESIGN ANALYSIS
2.1 Existing System
To prevent a faulty primary from hindering the liveness of the
Activation protocol or the Completion and Distributed Com-
mit protocol, or disseminating conflicting information to dif-
ferent replicas, a View Change algorithm is used. A backup
replica initiates a view change when it cannot advance to the
next phase within a reasonable time, or when it detects that
the primary has sent conflicting information. A View Change
algorithm is used to select a new primary when the existing
primary is suspected to be Byzantine faulty.
In recent years, several researchers have done work on Byzan-
tine Fault Tolerance mechanisms.Michael,Gregory,Garth and
Jay [1] Fault Scalable Byzantine Fault Tolerant Services show
that a fault-scalable service can be conjured to tolerate increas-
ing numbers of faults without sign cant decreases in perfor-
mance. The performance of the Q/U protocol decreases by
only 36% as the number of Byzantine faults tolerated increases
from one to have, whereas the performance of the replicated
state machine decreases by 83%.

Aamir,Bryan,Jonathan,and John [1] Byzantine Replication
under Attack show Byzantine replication protocol that
achieves the criterion and evaluate its performance in fault-
free configurations and when under at-
tack.James,Daniel,Barbara,,Rodrigo and Shirra [1]HQ Replica-
tion: A Hybrid Quorum Protocol for Byzantine Fault Toler-
ance show In the absence of contention, HQ uses a
new,lightweight Byzantine quorum protocol in which reads
require one round trip of communication between the client
and the replicas, and writes require two round trips. In their
recent paper describing the Q/U protocol [1],Abd-El-Malek et
al. note this weakness of agreement approaches and show

W IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 145
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

how to adapt Byzantine quorum protocols, which had previ-
ously been mostly limited to a restricted read/write interface
[12], to implement Byzantine-fault-tolerant state machine rep-
lication. This is achieved through a client-directed process that
requires one round of communication between the client and
the replicas when there is no contention and no failures.

DisAdvantages of Existing System:

1. A backup replica initiates a view change when it can-
not advance to the next phase within a reasonable
time, or when it detects that the primary has sent con-
flicting information.

2. A faulty primary Coordinator replica cannot reuse an
obsolete registration or vote to force a transaction
outcome against the will of a nonfaulty Participant.

2.2 Proposed System
This paper is a lightweight BFT framework for trustworthy

coordination of Web Services Atomic Transactions that ex-
ploits the semantics of the WSAT interactions to achieve better
performance than a general-purpose BFT algorithm that is
naively applied. We recognize that not every operation in WS-
AT requires Byzantine agreement among the Coordinator rep-
licas and, thus, that the total number of Byzantine agreements
needed in a typical transaction can be sharply reduced. More
specifically, our BFT framework uses a lightweight protocol
instead of running an instance of Byzantine agreement for
registration of each Participant. The protocol utilizes, at each
Participant, the collection of registration acknowledgments
from a quorum of Coordinator replicas, and a round of mes-
sage exchange at the start of the two-phase commit protocol.

Advantages of the Proposed System

1. The cost savings are substantial when the number
of Participants is large.

2. Reduce the number of Byzantine agreements need-
ed to achieve atomic termination of a Web Services
Atomic Transaction.

3 SYSTEM ARCHITECTURE
In this paper we create a bank application that users can access
from anywhere. Because we using the cloud service it will run

in the separate platform there is no need for additional so
ware. When the client give the request for bank service at the
time Activation service will be activate and check the account
no or else. Then coordinator will maintain the all the record in
the website.

3.1 Module Description

1. Bank Create bank accounts, coordinate the clients
and their accounts.

2. Client Transfer funds to the same bank or different
bank, add or view beneficiary, update personal in-
formation, apply for a loan, perform recurring de-
posits and send complaints.

3. Coordinator Access complete client information.

Client Module
Authentication:

In this module help to recognize the authorized user
of the application as client. Registration module helps to pro-
vide authentication to new user. The new client has to register
the application and then to login. In this module help to rec-
ognize the authorized user of the application as professors.
Registration module helps to provide authentication to new
user. The new client has to register the application and then to
login. The new client is registering the module. Client enter
the personal details might be register. And select the security
question in the website. All the details will be registering the
particular process. User verification is needed for every sys-
tem to keep security and for any other misuses. Each author-
ized user will have a user-id /name and a password for login.
This is directly giving from the cloud provider to the users
who are authorized. The users want to follow some rules and
conditions while using the system, and any misbehave will
lead to block of particular user-id/name.
Fund request:

Customer enters the website first select the transaction
type. Because fist select the debit or credit in any operations.
Customer click the credit means it’s going to credit operations
or else select the debit operations means it access the debit
operations.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 146
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Fig. 1.System Architecture

Bank Account creation:
New customer creates a bank account, gives all details to

the bank. So bankers analyze all the information of the cus-
tomer and check if it is correct,only then create the new ac-
count to the particular customer.
Transaction:

Customer when need to transfer the amount from one ac-
count to another account at the time he select the transaction
module. The module it contain the all the transaction infor-
mation to the particular customer.
Credit/ Debit:

Customer has the option to debit or credit.The credit opera-
tion it contains account information and amount information.
When you first enter the amount, it is in transaction mode.
First account A sends request in the activation service at the
same time, the activation service send the response to that par-
ticular request. After A gets the response, the information is
sent for bank service.
Log maintenance:

After complete the all transaction it provide the commit op-
eration for the particular account number. Then it contains
and maintains the all log details in the every client.
Coordinator:

Activation service:
Activation service only it activate the all the operation.

When you need to access the transaction so we select transac-
tion process at the time the activation server only activate the
particular operation.

Completion service:

Completion service is used to activate commit operations
only. Fund transaction transfer amount from one account to
another account, the moment it is ready to prepare the transac-
tion it sends a request to the coordinator service.The coordina-
tor analyses the account details and fund transaction and re-
plies to the completion service then it sends a response to bank
service and bank responds to the customer’s transaction.
Registration service:

The new user creates an account , at that moment bank ser-
vice sends the request to the registration service. The registra-
tion service verifies all information and responds to bank ser-
vice. Bank service responds to the customer.
Coordinator service:
The customer service it control all the web service. If any ser-
vice is faulty, it will redirect the replica service. It contains all
the information for each and every service.

 4 IMPLEMENTATION

4.1 Byzantine Agreement Algorithm
 If replica i has not yet reached the Pre-prepared state in view

v’<=vp,P is the tuple<v’,id,uuid>.

If replica i has reached the Pre-prepared state in view v’<=vp,P is
the tuple<v’,id,U>, where U is the set of Tuples<uuid,i> origi-
nally sent by 2f+1 replicas and included by the primary of view v’
in the UUID-Exchange message.

If replica i has reached the Prepared state in view v’<=vp,P con-
tains the tuple<v’,id,U> and the matching Prepare messages sent
by 2f other replicas in view v’.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 147
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Fig. 2. Byzantine fault tolerance
mechanisms for completion and distributed
commit.

BFT Completion and Distributed Commit:

If replica i has not reached the Pre-prepared state in view
v’<=vp,it uses its own Descision Certificate C as P.

 If replica i has reached the Pre-prepared state in view v’<=vp,P is
the tuple<v’,tid,O,C> where v’ is the view number,tid is the
transaction id and O is the transaction outcome and C is the
Descision Certificate proposed by the primary in view v’.

If replica i has reached the Prepared state in view v’<=vp,P con-
tains the tuple<v’,tid,O,U> and the matching Prepare messages
from 2f distinct replicas in view v’.

The Byzantine fault tolerant transaction completion and dis-
tributed commit mechanisms are illustrated in Fig. 4. When an
initiator replica completes all the operations successfully within
a transaction, it sends a commit request to the coordinator repli-
cas. Otherwise, it sends a rollback request. A coordinator replica
does not accept the commit or rollback request until it has re-
ceived f +1 matching requests from different initiator replicas.

Upon accepting a commit request, a coordinator replica
starts the first phase of the standard 2PC protocol. However, at
the end of the first phase, a Byzantine agreement phase is con-
ducted so that all correct coordinator replicas agree on the same
outcome and the participants set for the transaction. This will be
followed by the second phase of the 2PC protocol. If a rollback
request is received, the first phase of 2PC is skipped, but the
Byzantine agreement phase is still needed before the final deci-
sion is sent to all participants. When the distributed commit is
completed, the coordinator replicas inform the transaction out-

come to the initiator replicas. An initiator replica accepts such a

notification only if it has collected f +1 matching messages

from different coordinator replicas. Similarly, a participant ac-
cepts a prepare request, or a commit/rollback notification only
if it has collected f +1 matching messages for the same transac-
tion from different coordinator replicas. Again, this is to ensure
the request or notification comes from a correct replica.
As shown in Fig. 2, the Byzantine agreement algorithm used for
distributed commit has no ba-pre-prepare-reply andba-pre-
prepare-update messages are involved and the content of the
messages are different. Due to space limitation, we only de-
scribe the format and the verification criteria for each type of
messages used.

The ba-pre-prepare message has the form <ba-pre-prepare,
v, tid, o,C>vp ,where o is the proposed transaction outcome
(i.e., commit or abort), C is the decision certificate, and p is the
primary’s signature for the message. The de-cision certificate
contains a collection of records, one for each participant. The
record for a participant j contains a signed registration Rj = (tid,
j)j and asigned vote Vj = (tid, vote)j if a vote from j has been re-
ceived by the primary.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 148
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4.2 Results

1 New Account Creation:

3 Beneficiary Type

2 Account Verification

4 Customer Transactions

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 149
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

5 CONCLUSION AND FUTURE WORK
In this paper, we have addressed the problem of trustworthy
coordination of Web Services Atomic Transactions. We have
described a suite of protocols and mechanisms that protect the
WS-AT services and infrastructure against Byzantine faults.
The main contribution of this paper is that it shows how to
avoid naively applying a general-purpose BFT algorithm (i.e.,
totally ordering all incoming requests at the replicated Coor-
dinator), by exploiting the semantics of WSAT operations to
reduce the number of Byzantine agreements needed to achieve
atomic termination of a Web Services Atomic Transaction. The
cost savings are substantial when the number of Participants is
large. We have incorporated our BFT protocols and mecha-
nisms into an open-source framework that implements the
standard WS-AT specification. The augmented WS-AT
framework shows only moderate runtime overhead. It outper-
forms a reference implementation that naively applies the
PBFT algorithm to the WS-AT coordination problem, in both
LAN and WAN environments. The augmented WS-AT
framework is particularly useful for business applications
based on transactional Web Services that require a high degree
of dependability, security and trust.

REFERENCES
[1] M. Abd-El-Malek, G.R. Ganger, G.R. Goodson, M.K. Reiter, and J.J.Wylie,

“Fault-Scalable Byzantine Fault-Tolerant Services,” Proc. 20th ACM Symp.
Operating Systems Principles, pp. 59-74, Oct. 2005.

[2] Y. Amir, B.A. Coan, J. Kirsch, and J. Lane, “Byzantine Replication under At-
tack,” Proc. IEEE Int’l Conf. Dependable Systems and Networks, pp. 105-114,
June 2008.

[3] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and Proactive
Recovery,” ACM Trans. Computer Systems, vol. 20, no. 4, pp. 398-461, Nov.
2002.

[4] M. Correia, N.F. Neves, L.C. Lung, and P. Verı́ ssimo, “Worm-IT—A Worm-
hole-Based Intrusion-Tolerant Group Communication System,” J. Systems
and Software, vol. 80, no. 2, pp. 178-197, .Feb. 2007.

[5] J.P. Martin, L. Alvisi, and M. Dahlin, “Small Byzantine Quorum Systems,”
Proc. Int’l Conf. Dependable Systems and Networks, pp. 374-383, June 2002.

[6] Honglei Zhang, Hua Chai, Wenbing Zhao, P. Michael Melliar-Smith,
Louise E. Moser, "Trustworthy Coordination of Web Services Atomic
Transactions," IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 23, no. 8, pp. 1551-1565, Aug. 2012,
doi:10.1109/TPDS.2011.292

IJSER

http://www.ijser.org/

	1 Introduction
	2 Design Analysis
	2.1 Existing System
	2.2 Proposed System

	3 System Architecture
	3.1 Module Description

	4 Implementation
	4.1 Byzantine Agreement Algorithm
	4.2 Results

	5 Conclusion And Future Work
	References

